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ABSTRACT

In this paper we discuss three types of results: Firstly, we
present two Lévy-Khinchin type representations of Poisson type infinitely
divisible (i.d.) laws on certain topological vector (TV) spaces; one of
these complements a known representation due to Dettweiler. Secondly,
we define and characterize r-semistable laws on locally convex TV
spaces and also obtain good representation of their characteristic func-
tions. Finally, we discuss the existence and the continuity of the semi-
group {ut :t >0} of £.d. laws . on locally convex TV spaces, These

complement similar known results of Siebert.

* The research of this author is partially supported by the Office of
Naval Research under contract No, N%?lb-?B—c-0668.
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I. INFINITELY DIVISIBLE LAWS

Let X and Y be two real vector spaces in duality, with VY

separating points of X ; and let y be a weakly Radon law on X with

Levy measure F . We recall that F is a measure on X\{8} such that

F 1is finite and weakly Radon outside every mbd. V of 6 ( for the

weak topology o ) and that the relation

(1) Log ug(y) = [[cos y(x) - 11dF ,

wvhere y ¢ Y and f(dx) = F(dx) + F(-dx) , defines the characteristic

(ch.) function ﬁs of yug , the symmetrization of u . More pre-
cisely the family {usv} of the laws, defined by (1) by reducing the
integral in (1) to X\V = V€ , is tight and converges to pg as the
filter {V} + {6} . We recall also that u and Mg are infinitely

divisible (i.d.): ul/n and u 1/a exist and are weakly Radon for

s
every positive integer n . The measure uslln

is obtained by re-
placing F by ?/n in (1). We denote the class of these measures by
T and say that py € T 1is of "Poisson type" if | has no Gaussian

component.
Lemma 1. Let G be a (bounded) measure and let
e(G) (z ¢ 8 ) é}r , 8 = G(X) ) 4is a proper factor of  ; i.e.

p = e(G)v with veT (v being Radon for o ). Denote by &(e)

-28

the inverse function of €(§) = §e™“",with 2§ <1 . If

€ = u:(Ac) < -]i'-e , then one has, for every positive rational ¢t ,
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a" tl(a - A)°} < G(u:(Ac)) ;
in particular,

a" t6(A%) < 6(us(a%/2)) ,
1f A is a.c. (absolutely convex).

Proof. Denote by G/ the restriction of tG to (A - 4)% and by
8, the total mass of tG. Sinceby hypothesis vt exists, it follows
that p = e(Gé) is a factor of ut and hence also of u; . This
implies that there exists an a such that o(A - a) > 1 - ¢ ; which
in turn implies that ps(A - A) >1 - 2¢ . Thus, we have

2e > e‘zsc 2g, ; implying g, < 8(e) , completing the proof.

Remark 1. This lemma (among its other applications) is, in fact, used
to define Fye » the restriction of F to VS, provided that u is

known to have finite projections of the form e(FI) (: Wy = wI(u)

*1
nI(x) - wai(x) , for 1 a finite subset of Y ). To see this, one
takes t = 1 and uch < -21-e , for an appropriate weakly compact set
K , and applies Prokhorov's theorem to My s FI,VC ,with V open
cylinder gets; this assures the o~-Radon extension of FI,VC to a
bounded measure Fc which assigns zero mass to V .

Also, if u is Radon for a topology ( finer (than ¢ ) having
the dual Y , then Fv's and F = sup Fv are C-Radon: Let U be a
given C-nbd. of 8 ; choose a symmetric C-nbd. U' of 6 with

U' +U' CU and a positive integer n; such that u»:/nO(U') >1 - -]i'-e
lln}

(this 1s possible from (1) and the observation that the family {u'
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ot s T D iy S ptiings e oD

ME—



is C-tight); then for A =TU' , (1') yields
@S co' +uM° < nsGl/P0@ey) |

This proves the fact mentioned in the beginning for (X,(C) (with dual
Y ) assuming the only hypothesis that up are of Poisson type (see

[5], for the existence of ul/n ).

Theorem 1. Let X be a topological vector space (TVS) such that the
dual Y of X sgseparates points of X and let ' be a weakly Radon
Poisson type law on X with Lévy measure F . Assume that for some

a.c. weakly compact set K one has

(2) F(k®) < ® , and i |x|* dF <, 2=1, 2,

vhere [x| = |le = inf {t > 0 : x ¢ tk} . Then the formula
Pty LW or r («Y® Jnar,

{"‘{"“ tne|x|?
1f ¢ = 1, defines a Radon law M for each n € [0, 1]; further, the family

(3) Log ﬁn(y) -

{un : 0<n< 1} 1is weakly tight and converges to p ( = Mo ), which

is a translate of u' .

Proof.* Let p(y) = pr(Y) (the Minkowski functional of KO , the

polar of K ) and €N u;(NKC/Z) ; using Lemma 1, we have

FOK®) < 8(ey) -
To begin with we assume that F 1s bounded outside every nkK .
This assures us that the law Up o defined by (3), is Radon, for every

n>0. Let g, be as above and ¢

y > 0 be such that Iegleg <1

* The method of proof here, as well as that of Theorem 4, is
similar to that of {6].
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then, as uns and therefore un are factors of Hg using a well
known method [4, 9], we can choose ap € X such that {ua = uns(an)}
is tight; in fact, u:} (NKC) ieﬁ + Now in {p < ]x] <1} , the abso-
lute value of the integral in (3) is dominated by pz(y) f l%+f dF ;

{n < [x] <1}

and since p <1, pz(y) <P(y) . In {1 < |x| < N} , clearly,

If (eiY(x) - 1)dF| < p(y) / ]x]zdF )
fl<[x[iN} * {1 < |x| < N}

Thus, we have

4) |Log 1, (y)| 2 2(gp + GP

where CN = f |x|2dF <=, as F is bounded outside K . But,
NK

clearly,
4" Iur"(y) -1 < 2eg + Np(y) .

Thus |up(y) - 1| and |ﬁ;(y) - ﬁn(y)| are both uniformly small with
p(y) ; therefore, as GA(y)/ﬁn(y) = eiY(an) ,|eiy<an)- 1| and hence y(ap)
are uniformly small for all y ¢ tk® (for small t ). Thus ap ¢ P ¢ .
for all n . This proves {"n} is tight.

Now we show that (3) defines a Radon law when F(nKS) 1is not
necessarily finite: The preceeding arguments, applied to a net {Gy}
of finite measures with G, + F, = F/{x: |x| > n} , n fixed, show
that (4) holds with the ssme constants CN and 6(eN) for the law
Hna defined by (3) with F replaced by Ga « Similar arguments apply
to (4'). Thus Uy » being the limit of the tight net {upg} of Radon
laws, is Radom.




The following two corollaries are immediate from the theorem.

corcllary 1. Let F satisfy the hypothesis (2), {Fa} an in-
creasing filter with Fa ¢+ F and let u, be the Radon law defined by
(3) with n=0 and Fn replaced by Fa . Then {u,} 4is tight and

My * ¥ , where u 1is as in the theorem.

Corollary 2. Let (X,C) be a TVS with the dual Y separating
points of X . If u' is C-Radon and F satisfies (2) for some
C-compact set K, then the conclusions of the theorem hold in the sense
that tightness as well as the convergence are in the sense of ( .

The hypothesis F(Kc) < o (which always holds for a suitable
set K , by Lemma 1) does not necessarily imply that [|x|%dF < » , for

K

ueT . We give another theorem which assumes the hypothesis:
(5 (X,C) is locally convex (l.c.) and complete.

This hypothesis has the drawback in that it is not applicable

wvhen C = 0 . We begin with a lemma.

Lemma 2., Let (X,() be a complete l.c. TVS.

(1) 1f {u,} 1is a convergent (following a certain filter) tight
family, then the ch. functions ﬁa(y) of u, converge uniformly on the
polar 0 of every C-nbd. U of 6 .

(i1) 1If the family {u, * §(a,)} of the translates of u, 1is
tight and if the family {ii ]} of ch. functions converge (following
a certain filter) to a function ¢ uniformly on the polar of every

nbd. belonging to a C-nbd. base of & , then there exists a unique

C-Radon lav u such that ., >y and 4 =9 .

+-
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Proofs of these are given in [1]. Using a contrapositive
argument, a simpler proof of (i) follows easily by observing that 0
is compact for o , that the topology Co of uniform convergence on
C-compact subsets of X coincides with ¢ on Uo and that the condi-
tion of C-tightness of {u,} implies the equicontinuity of {u,} on

Uo for o = (O,

For the proof of (ii) see ({1] p. 293). One shows, as in the
proof of Theorem 2 below, that {eiy(a“)} forms a Cauchy filter uni-
formly on suitable sets KO which assures, as Ko absorbs every U0 s
that {an} is C-Cauchy; thus the necessity of the completeness of
(X,C) .

In the following theorem the method of proof is that of [1]; it
provides another expression obtained in Theorem 2.5 of [1] which gives

a Lévy-Khintchin formula.

Theorem 2. Let u' be a Poisson type C-Radon law with Levy

measure F on (X,0) ( (X,€) 1l.c. and complete) and let {Fa} be an

PPN

increasing net of Radon laws on X\{8} with F, ¢+ F . Then for every

bounded Borel set B with F(B®¢) < » , the formula §
(%) Log ig(y) = [[eY® -1 - 1y I1x)ar,
B

defines a Radon law By 3 further if F, in (5) is replaced by F ,
then (5) defines a Radon law u which is a translate of u' and the

net {u,} converges (in the sense of C ) to u.
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Proof. To begin with we argue by assuming that (5) defines the
Radon laws. The laws u,g form a tight family (see Lemma 2 of [4]),
which converges to ug . Moreover ug is continuous in (V,CO) , which
assures that lﬁs(y)| > 1/2 on the polar of a suitable compact set K

u©

and hence also on %i , for every C-nbd. U of & and large enough

n , depending on U . Then, form (i) of Lemma 2, we have
(6) JI1 - cos y(x)]Id(F - F)) 0,
B

uniformly in each %r U0 : hence also
2
(7) [y'(x) d(F - F) » 0,
B

uniformly on T];; 9 as long as 2B Cn'U and n' > n, because

|t| < 1/2 1implies 1 - cos t > t?/3 . We thus have
" [1e7® _1 - gy@laE - F) » 0,
B

uniformly on ;%r uo . Thus, since the laws defined by

ly(x) _ 1 - iy(x)]dF, are factors of u (see below),

Log fig(y) = [[e
B

Lemma 2 (ii) applies and the result follows (we do not affirm that
{ug} 1s tight).

To see that (5) indeed defines Radon laws; let, for fixed Fo »
{Gaa} be an + net of bounded measures with GaB 4+ F, . The pre-
ceeding estimates and arguments a fortiori hold, proving that Mg »
being the limit of the Radon laws Mag which are defined by (5) and
GGB , 1s Radon.
Note that this applies to F& = F - F,; therefore u  1s indeed

a factor of u (the cofactor u; is defined by (5) and F, ).




II. SEMISTABLE LAWS ON TVS

Lemma 3. Let (X,C) be a TVS, whose dual VY separates points of X .
If u 1is weakley rt-regular law on X , then there exists an
element a in X such that Mg = ud(-a) 1is supported by the space

E = {x: y(x) = 0, for every y for which uy is degenerate} .

Proof. Let S = {x: y(x) = ag » if y=a, a.s. ul ; then 5 1is
weakley closed and u(S) =1 . Now it is clear that for any a in
S, we have E =S - a with u_a(E) =1.

The following theorem defines and characterizes r-semistable

laws:

Theorem 3. Let (X,C) be l.c. TVS. Let u, v be two C-Radon
laws (with p convexly tight*) and let O < r <1 . Then (8) and (9)

below are equivalent:

There exist sequences (an} » a > 0, {bn} CX and a

(8) strictly increasing seuqence {k,} of positive integers such
k
n+l 1

B —
k ]
n r

that **(a v'e(b ) > u ,

u is (1.d.) and u¥ = (a-p)s(b), for some bec E and a > 0 ,
(9

where E 1s as in Lemma 3.

(If u satisfies (8), then u 1is called r-semistable.)

* p 1is tight following compact convex sets. Note any C- tight
law is convexly tight if (X,() 1is quasi-complete; same remark applies
for o 1if X 48 complete for the Mackey topology.

**% If v 4is the law of a random vector X and a ¢ 0, then
a'v denotes the law of aX .
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Proof. If yeE' (thedual of E), y # 6, then My H uoy-l

and hence “y is non-degenerate, and one has
(ap*Vy D)6 (y (b)) >y

as n > ., This implies that u is i.d. and u¥ exists (see [5],
p- 320). Let ¢ and ¢ denote, respectively, the éh. functious of

v and u . Then (8) implies
Y Ca)yknca vy 5 u(ey)
and
*a

k
10) (1Y (PatD) katl(n L ey)] P s 4T (ey)

(uniformly on bounded subsets of reals), as n -+ » . But left gide of

(10) can be written as

a ii
eitY(bn)¢kn( ::-1 3ntY)eity(EnT1 bp+l = bn) .

hence, using the types of convergence theorem on R , the reals, we have

an+l kn

—— — - - d
+a>0 y(l 1 bn+1 b,) by (with a independent of y ), an

10" u; = (a-uy)é(by) .

But (10') and Corollary 1 of Lemma 2 of [4] imply that there exists a
b ¢ E such that by = y(b) and that ur = (a-u)é(b) .
Conversely, let kn be the integral part of r-n (r < 1) , then

:pkn + 1, Then (9) and continuity of {u®} (see Section III) gives

ky

u = (a%u )8k ba)ru,

——— - e e e ————— — e
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kntl 1
where btn € E. Hence (9) holds with -E;- =

Lemma 4. Let u be as in Theorem 3 with (X,C) l.c. TVS and let

H={t >0: ut

= (ag-w)8(b,) , for some a > 0, b, eX} (H $ ¢
for 1 satisfying (9)). Then H is a closed multiplicative subgroup
of R¥ = {r : r >0} . Thus either H = R+ (then u 1is stable) or

H 1is generated by Ty the largest element in H less than 1 (then
is ro-semistable). In particular, one has urn = (a:-u)é(brn) .

a(r)a(r') = a(rr') , let a, = .

Proof. It is clear than t_l ¢ H, whenever t ¢ H . On the other hand
if c,t cH, then 5y = plagyeT P and

showing tt' ¢ H .
Finally, let {t;} CH with t, >t then utn = (atn-u)c(bn) for
each n . Now by continuity of {x®} , we have lgm (atn-u)s(bn) =
1%“ utn = ut . This and the types of convergence theorem (after pro-
jecting to R ) shows that u; = (a-u)G(by) , for every y e E' ,

with a independent of y , as in Theorem 3. Hence from ([4]1, p. 304),

we have that t € H .

Lemma 5. Let p and (X,C) be as above. If X ¥ 1, then u can be
centered: for some me¢ X , vEW o satisfies vt = th.y , for all

teH.

Proof. Let X, and X be vectors with laws u° (r $ 1) and u ,

respectively, then one has

b
(11) m = ;—%; - X -mfx-w .
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Now if H is generated by r,; define m by Ty » then & = ti.y
holds for all t ¢ H , by (11) and iteration. For the case H = rt s
¥ 1is stable, and m is independent of t because L 's are (see

Lemma 3, p. 178 and Note 5 of [6]).

Lemma 6. Under the hypothesis of Theorem 3, (8) for r = 1 is equiva-

lent to (9) for all r (with a, = rx » A >1/2 (from Theorem 4));

i.e. u 1is stable of exponent o = 1/X .

1/

Proof. Taking r = 1/n , we obtain from (9), u n . (an-u)s(bn) which

yields u = (an‘un)G(nbn) . Showing u satisfies (8) with k; = n.
Conversely, assume u satisfies (8) with r =1 ., Let now r ¢ (0,1)

one can choose a sequence X, = kn/kn' with a' > n , such that +r .

An

Now, for y ¢ E' , it follows, from (8), that

$“0a,ty)e 7 D) &y (ey)

and

[s¥0' yey)elY (EBndykn/bat (T ey

uniformly on bounded subsets of R . Then repeating the arguments used

debtats 10 v

in the proof of Theorem 3 we see that (9) holds.

Theorem 4. Let u be a C-Radon convexly tight r-semistable law on

S -

(X,0) (with (X,C) 1l.c.) . Assume that a = %% <2 (for a=2 and
" a2

u centered, yT(yt) = y(/r ty) gives, uy(t) = u;(l) and so yu is

Gaussian), then we have:

(1) The Lévy measure F of u satisfies

(12) rPF = 7F

SR |
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for all n = ¥1, *¥2, ... . For every u-positive a.c. bounded closed
set B, F 1is bounded outside every set nB (n > 0) and is supported
by the space EB =UnB . Further, lle is F-integrable on
{|x| < n} 4f and only if y >a and on ({|x]| > n} if and only if
Y <a, for all n > 0 , where |[x| = pB(x) = inf {t >0 : x ¢ tB} .

(ii) The ch. function of the centered law u., of y for

a # 1 , has the form

(13) Log i (y) = [(7® - nyar,
if a <1, and

(13") Log o () = [1e7™ -1 - ymlar

if 1 <a <2 . For every B (compact for ¢ or C ), (13) and (13'")

signify that 1f u_ denotes the law corresponding to the ch. function

n
obtained by truncating the integrals to {|x| > n}, then {un} is

tight and converge to u. as n-+0. For a =1, one has the same
result for a translate u' of p ( u' in general is not centered if

F 1is not symmetric) with
13" Log &' (y) = [1e7™) -1 - 1y 1er

for an appropriately chosen compact set B .

(114) 1f (X,C) 1is,in addition, complete and metrizable, these
properties of the families {u,} and {ua} hold for all u-positive
a.c. bounded closed sets B . If (X,C) 41is only l.c. complete (and not
metrizable), the convergence property of the measures still holds, but we

no longer affirm that the family is tight.
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Proof of (1). Since uI = rk'us , and Log ﬁs(y) = [ kos y(x) -1]dF ,

we have
[lcos y(x) -1]rdF = [{cos r'y(x) - 1]dF = [[cos y(x) = 1]d(cF) ;

thus (12) holds for F . But in finite dimension the same thing holds

modulo the translation with j(eiY(x) - 1)dF ; thus F_, satisfies (12);

y

therefore so does F .
Fix B , then since ul = t}"us, for all t = r® , and u(B) > O ,

we have

s () = uglorp) + 1
as n +x , by the 0-1 law (see [10]) and by the fact that
ug (2B%) 5_(;1(8“))2 . Lemma 1, therefore assures us that F 1is bounded
outside each set nB . Thus, by (12), r°F(8) = F(B%/t™) + 0 as
n + » , showing Ep supports F .
Now let n = 00 (by the choice of ngy , we can make
n arbitrarily small or large), then this same formula (12) gives:

@ > {tzdFy(t) > ] t21(n+1)Fy{rX(n+1) <ltl£-tkn}
{|t]<1} 0

= (1 - n)F{|t]| >1} ] L@ (21 -1)
0
1
(showing = = a <2),

(®) [lx%ar = § ™D <) < Y
(x| < 270y O

- ifr@) [ O ca
5o

if v >a; and
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() leleF < Z r-Y)\(n-l-l)F{r-An < lx' ir-k(n+l)}
{|x] » r)«no} Bl

’

- ATy iS) ) NI S 220 I
th -no

if vy <a .

The same method proves that in (b) and in (c) Yy cannot be

< a , respectively, > a .

Proof of (ii). Using (i), we apply Theorem 1 by taking an appropriate

compact set K=B and ¢ =1, if a<1l ,and 2 =2 i1if o >1.

Clearly in the first case one obtains (13) and the proof of the asser-

tion (i1), the same in the second case after translation by - [ cxdF .
B

For the case a = 1 and F non-symmetric one uses (c) to obtain (13")

(as in the case of stable law of exponent 1 in R ).

Proof of (iii). Apply Theorem 2 with Fn equal to the restriction of

F to {x: |x| >n} and completing by the translation -[ xdF , if
B
@ <1, and by fc xdF , 1f a > 1 . That the families {u,} and
B
{u,'|} are tight, under the hypothesis that X 1s complete metric space

follows from a result of Topsde ([3], p. 43). One shows, in fact, that

{un} is relatively compact (in the set of C(-Radom laws), for 0 < n < 1.
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III. THE SEMIGROUP % on R*

Let u be i.d. and Radon on (X,C) with (X,C) 1l.c., them t
is defined for all t (rational) > 0 . Siebert has shown ([2], p. 243)

that ut can be defined for all t > 0 ; in fact, he proved the following:

Theorem 5. (Siebert) Let u be i.d. and C-Radon and convexly tight
on (X,C) with (X,() 1l.c. Then the semigroup {ut : t >0} 1is
uniquely defined and continuous, and {ut : t e (0,T]} is tight, for

every T >0 .

Remark 2. Theorem 4 of Siebert ({2], p. 243] gives probably the simplest
method to obtain the above result which is nearly the most general

result of this type. In the following we give another presentation of
this problem. Even though our hypotheses (both on u and X ) are
weaker, we are able to affirm the continuity of {uF} only over the set

of rationals. The definition and continuity of ut, for all real

t > 0, is also proved but this is done under more restrictive condi-

tions. We being with a lemma:

Lemma 7. Let X be a Banach space and u an i.d. Radon law on X .
Then a (unique) continuous semigroup {ut : t >0} always exists;

further, Wt :te (0,T]} 1s tight, for every T > O .

Proof. It has been proved more than twelve years ago by Parathasarathy*
for the space C[0,1] . This applies for the case considered here,
since ul/n , n=1, 2 .., , are all supported by a separable subspace

of X which can be isometrically embedded in X = C[0,1] . (Note that

¢ #* Preprint; the proof is similar to that of Siebert:
{(u"8(ap) : t > 0} being tight, one shows that so is (&(ap)} .
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X supports ut , because every y € Y = X' which is zero a.s. u 1is
also zero a.s. ut , for fixed t , and ut is rt~-regular in X and
hence in X ). We provide a direct simple proof of this lemma; let

u' be the law with
Log i't(y) = l{[ei”(’" -1 - iy(x)]edF ,
where B = {x : [xl <1} , and t rational in [0,1] . The inequality
t sup fyzdF < 3t _sup f[l - cos y(x)]dF < Const. t
“y"f_& B !y“i& B -

(note Iﬁ;(y)l >n>0 in {y : Iyl < 6} , for some & > 0 ) gives

|Log ﬁ't(y)l :'tﬂsﬁp fyz(x)dF < Const. t . This and Lemma 2 assure the
yl<1 B

definition of ut by continuity, for all t > 0 . Thus the continuity
of the semigroup on RY 1is proved; that {ut : t e (0,T]} 1s tight is

proved as in (iii) of Theorem 4.

Theorem 6. Let (X,C) be l.c. and let u be a weakley t-regular i.d.
law on the C(-Borel og-algebra of X . Then the semigroup

{w¥ : r >0, r rational} is continuous. If, in addition, X is
metrizable and complete then a unique continuous extension of the above

semigroup to R* exists.

Proof. Let Xo = {x: y(x) 0 4f y=0 a.s. u} ; then since

ulln , n=1, 2, ... , are wveakley rt-regular and y = 0 a.s.

1/n

implies y = 0 a.s. u . We have ul’“x

o=1, for all
an=1, 2, ... ; we thus can replace X by Xo s for the proof. For a

closed a.c. C-nbd., U of Xo , denote by Xv the quotient space

~d

e
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XO / palfe} » where p. 1is the Minkowski functional of U , then
)ﬂj is a separable normed space under the norm IxUI = py(x) , where
Xy is the image of x under the natural projection (see [7], p. 135-
136). Now in )% , U= {x: pU(x) <1} and
r r ~r .- ~ r
u(U)-uU{xU: lxulf_l}-uu{xe)(uz |x| < 1} , where wy and
ﬁ; denote, respectively, the images under the obvious maps of ur in
)(U and ;(U , the completion of XU . Since ﬁ;{]il <nl+1 as
r -0 (r rational), for all n > 0 (from Lemma 7), ur(nU) -1, for

all nU , proving the continuity of ur for all r (i.e. as r,~>r,

u"ﬂ"' + §(8) ), finishing the proof of the first part. The last

part under additional conditions on X now follows easily: Let ut be

the law of an with X 's independent X-valued r.v.'s where law of
n+l~Tn

Xn-u and Tn

+ t ; then ut is uniquely defined. 1It is
T
continuous in all ¢t , since ut(U) > lim ﬁ?p u n(U) assures that
Tn

ut-bs(e),aa t+0.

Corollary 3. Let (X,() bhe a separable metric l.c. space and p an
i.d. law on (C-Borel o¢-algebra of X . Then the semigroup

W oer (rational) > 0} 4is continuous in the sense of ( and also in
every topology of a separable normed space E which is continuously
embedded in X and which supports u . Further, a unique continuous
extension in R* of the semigroup exists in the completion E of the

space E .

Proof. Let E S X be such a space (for the existence see [8]). From

Theorem 1 of [8], one can suppose that E 1is dense in X and that u

e
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is defined on the Borel o-algebra of E (which is the trace of the
Borel o-algebra of X ), it follows u is i.d. on E . Hence, as in
Theorem 6, this proves that {u°} is continuous on E . The last

part is immediate from the Theorem 6.

=
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